Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
3.
Swiss Med Wkly ; 150: w20295, 2020 05 18.
Article in English | MEDLINE | ID: covidwho-2268435

ABSTRACT

Following the rapid dissemination of COVID-19 cases in Switzerland, large-scale non-pharmaceutical interventions (NPIs) were implemented by the cantons and the federal government between 28 February and 20 March 2020. Estimates of the impact of these interventions on SARS-CoV-2 transmission are critical for decision making in this and future outbreaks. We here aim to assess the impact of these NPIs on disease transmission by estimating changes in the basic reproduction number (R0) at national and cantonal levels in relation to the timing of these NPIs. We estimated the time-varying R0 nationally and in eleven cantons by fitting a stochastic transmission model explicitly simulating within-hospital dynamics. We used individual-level data from more than 1000 hospitalised patients in Switzerland and public daily reports of hospitalisations and deaths. We estimated the national R0 to be 2.8 (95% confidence interval 2.1–3.8) at the beginning of the epidemic. Starting from around 7 March, we found a strong reduction in time-varying R0 with a 86% median decrease (95% quantile range [QR] 79–90%) to a value of 0.40 (95% QR 0.3–0.58) in the period of 29 March to 5 April. At the cantonal level, R0 decreased over the course of the epidemic between 53% and 92%. Reductions in time-varying R0 were synchronous with changes in mobility patterns as estimated through smartphone activity, which started before the official implementation of NPIs. We inferred that most of the reduction of transmission is attributable to behavioural changes as opposed to natural immunity, the latter accounting for only about 4% of the total reduction in effective transmission. As Switzerland considers relaxing some of the restrictions of social mixing, current estimates of time-varying R0 well below one are promising. However, as of 24 April 2020, at least 96% (95% QR 95.7–96.4%) of the Swiss population remains susceptible to SARS-CoV-2. These results warrant a cautious relaxation of social distance practices and close monitoring of changes in both the basic and effective reproduction numbers.


Subject(s)
Betacoronavirus/isolation & purification , Communicable Disease Control , Coronavirus Infections , Disease Transmission, Infectious , Pandemics/statistics & numerical data , Pneumonia, Viral , COVID-19 , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/statistics & numerical data , Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Hospitalization/statistics & numerical data , Humans , Models, Statistical , Mortality , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Space-Time Clustering , Stochastic Processes
4.
Health Aff (Millwood) ; 42(3): 366-373, 2023 03.
Article in English | MEDLINE | ID: covidwho-2285269

ABSTRACT

Early detection and ongoing monitoring of infectious diseases depends on diagnostic testing. The US has a large, diverse system of public, academic, and private laboratories that develop new diagnostic tests; perform routine testing; and conduct specialized reference testing, such as genomic sequencing. These laboratories operate under a complex mix of laws and regulations at the federal, state, and local levels. The COVID-19 pandemic exposed major weaknesses in the nation's laboratory system, some of which were seen again during the global mpox outbreak in 2022. In this article we review how the US laboratory system has been designed to detect and monitor emerging infections, describe what gaps were revealed during COVID-19, and propose specific steps that policy makers can take both to strengthen the current system and to prepare the US for the next pandemic.


Subject(s)
Communicable Diseases, Emerging , Pandemics , Humans , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , COVID-19 , Laboratories , Pandemics/prevention & control , Policy
5.
Annu Rev Anim Biosci ; 11: 33-55, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2284296

ABSTRACT

Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.


Subject(s)
Communicable Diseases, Emerging , Virus Diseases , Animals , Humans , Animals, Domestic , Disease Reservoirs/veterinary , Zoonoses , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Virus Diseases/epidemiology , Virus Diseases/veterinary
7.
J Infect Dis ; 224(12 Suppl 2): S749-S753, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-2189126

ABSTRACT

Bangladesh is entering from low-income to lower-middle-income status in 2020, and this will be completed in the next 5 years. With gross national income growing, vaccines will need to be procured through private market for the Expanded Program on Immunization. A cost-benefit analysis is needed to evaluate vaccine demand in different socioeconomic groups in the country, to inform this procurement. Moreover, disease burden studies and awareness of importance of specific vaccines are needed as we move forward. A life-course approach to vaccination may enable whole society to realize the full potential of vaccination and address most significant threats to its success over time.


Subject(s)
Cholera Vaccines/administration & dosage , Cholera/prevention & control , Sustainable Development , Vaccination , Bangladesh , Communicable Diseases, Emerging/prevention & control , Humans , Immunization Programs
8.
J Pediatr (Rio J) ; 99 Suppl 1: S37-S45, 2023.
Article in English | MEDLINE | ID: covidwho-2150172

ABSTRACT

OBJECTIVE: To identify and describe learnings from past pandemics and to suggest a framework for vaccine development as part of epi/pandemic readiness. SOURCE OF DATA: Articles/ reviews/letters on pandemic preparedness/ vaccines published between 2005 and 2022 in PubMed, MEDLINE, MedRxiv, BioRxiv, Research Square, Gates Open Research; who.int, cepi.net, visualcapitalist.com, airfinity.com, ted.com websites; press releases. SUMMARY OF FINDINGS: Disease pandemics caused by emerging pathogens impacted the social development, health and wealth of most societies in human history. In an outbreak, the first months determine its course. To block an exponential spread and the development of an epi/ pandemic early, vaccine availability in sufficient quantities is of paramount importance. It is inevitable that new human viruses will emerge. Any future pandemic will come likely from RNA viruses through zoonotic or vector transmission, but we cannot predict when or where "Disease X" will strike. Public health, scientific and societal readiness plans need to include: continuous identification of new viruses in common mammalian reservoir hosts; continuous epidemiological surveillance, including wastewater sampling; establishment of prototype vaccine libraries against various virus families sharing functional and structural properties; testing of various and innovative vaccine platforms including mRNA, vector, nasal or oral vaccines for suitability by virus family; functional clinical trial sites and laboratory networks in various geographies; more efficient phasing of preclinical and clinical activities; global harmonization and streamlining of regulatory requirements including pre-established protocols; and societal preparedness including combating any pandemic of misinformation. CONCLUSIONS: "Outbreaks are unavoidable, pandemics are optional".


Subject(s)
Communicable Diseases, Emerging , Vaccines , Animals , Humans , Communicable Diseases, Emerging/prevention & control , Disease Outbreaks/prevention & control , Pandemics/prevention & control , Mammals
11.
Front Immunol ; 13: 896958, 2022.
Article in English | MEDLINE | ID: covidwho-2123410

ABSTRACT

Vaccines can prevent many millions of illnesses against infectious diseases and save numerous lives every year. However, traditional vaccines such as inactivated viral and live attenuated vaccines cannot adapt to emerging pandemics due to their time-consuming development. With the global outbreak of the COVID-19 epidemic, the virus continues to evolve and mutate, producing mutants with enhanced transmissibility and virulence; the rapid development of vaccines against such emerging global pandemics becomes more and more critical. In recent years, mRNA vaccines have been of significant interest in combating emerging infectious diseases due to their rapid development and large-scale production advantages. However, their development still suffers from many hurdles such as their safety, cellular delivery, uptake, and response to their manufacturing, logistics, and storage. More efforts are still required to optimize the molecular designs of mRNA molecules with increased protein expression and enhanced structural stability. In addition, a variety of delivery systems are also needed to achieve effective delivery of vaccines. In this review, we highlight the advances in mRNA vaccines against various infectious diseases and discuss the molecular design principles and delivery systems of associated mRNA vaccines. The current state of the clinical application of mRNA vaccine pipelines against various infectious diseases and the challenge, safety, and protective effect of associated vaccines are also discussed.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , COVID-19/prevention & control , Communicable Diseases, Emerging/prevention & control , Humans , RNA, Messenger/genetics , Technology , Vaccination , Vaccines, Attenuated , Vaccines, Synthetic , mRNA Vaccines
12.
JAMA Ophthalmol ; 140(10): 935, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2084956

ABSTRACT

This Viewpoint discusses the role that the field of ophthalmology will continue to play in the identification, control, and treatment of novel pathogens.


Subject(s)
Communicable Diseases, Emerging , Ophthalmology , Humans , Communicable Diseases, Emerging/prevention & control
13.
Front Immunol ; 13: 949779, 2022.
Article in English | MEDLINE | ID: covidwho-2005873

ABSTRACT

The development of safe, long-term, effective vaccines is still a challenge for many infectious diseases. Thus, the search of new vaccine strategies and production platforms that allow rapidly and effectively responding against emerging or reemerging pathogens has become a priority in the last years. Targeting the antigens directly to dendritic cells (DCs) has emerged as a new approach to enhance the immune response after vaccination. This strategy is based on the fusion of the antigens of choice to monoclonal antibodies directed against specific DC surface receptors such as CD40. Since time is essential, in silico approaches are of high interest to select the most immunogenic and conserved epitopes to improve the T- and B-cells responses. The purpose of this review is to present the advances in DC vaccination, with special focus on DC targeting vaccines and epitope mapping strategies and provide a new framework for improving vaccine responses against infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Vaccines , Antigens , CD40 Antigens , Communicable Diseases, Emerging/prevention & control , Dendritic Cells , Humans , Vaccination
14.
Clin Trials ; 19(6): 647-654, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1957005

ABSTRACT

BACKGROUND: The threat of a possible Marburg virus disease outbreak in Central and Western Africa is growing. While no Marburg virus vaccines are currently available for use, several candidates are in the pipeline. Building on knowledge and experiences in the designs of vaccine efficacy trials against other pathogens, including SARS-CoV-2, we develop designs of randomized Phase 3 vaccine efficacy trials for Marburg virus vaccines. METHODS: A core protocol approach will be used, allowing multiple vaccine candidates to be tested against controls. The primary objective of the trial will be to evaluate the effect of each vaccine on the rate of virologically confirmed Marburg virus disease, although Marburg infection assessed via seroconversion could be the primary objective in some cases. The overall trial design will be a mixture of individually and cluster-randomized designs, with individual randomization done whenever possible. Clusters will consist of either contacts and contacts of contacts of index cases, that is, ring vaccination, or other transmission units. RESULTS: The primary efficacy endpoint will be analysed as a time-to-event outcome. A vaccine will be considered successful if its estimated efficacy is greater than 50% and has sufficient precision to rule out that true efficacy is less than 30%. This will require approximately 150 total endpoints, that is, cases of confirmed Marburg virus disease, per vaccine/comparator combination. Interim analyses will be conducted after 50 and after 100 events. Statistical analysis of the trial will be blended across the different types of designs. Under the assumption of a 6-month attack rate of 1% of the participants in the placebo arm for both the individually and cluster-randomized populations, the most likely sample size is about 20,000 participants per arm. CONCLUSION: This event-driven design takes into the account the potentially sporadic spread of Marburg virus. The proposed trial design may be applicable for other pathogens against which effective vaccines are not yet available.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Marburg Virus Disease , Marburgvirus , Vaccines , Animals , Humans , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Marburg Virus Disease/prevention & control , SARS-CoV-2
16.
Front Public Health ; 10: 904569, 2022.
Article in English | MEDLINE | ID: covidwho-1903240

ABSTRACT

The COVID-19 pandemic gives humankind a lesson that the outbreak of an emerging infectious disease (EID) is sudden and uncertain. Accurately mastering its dynamics and putting forward an efficient and fair humanitarian logistics plan for personal protective equipment (PPE) remains difficult. This study examines the decision making for humanitarian logistics to answer the question that how to coordinate fairness and efficiency when facing supply-demand imbalance during humanitarian logistics planning in an EID environment. The main contributions include two aspects: (1) The victims' losses in terms of fairness and efficiency in receiving PPE are jointly explored by evaluating their bearing capacity evolution, and then a novel loss function is built to search for a reasonable compromise between fairness and efficiency. (2) A multi-objective optimization model is built, which is solved using the combined use of goal programming approach and improved branch and bound method. Finally, the practicability of the proposed model is tested by an EID case study. The potential advantages of the proposed model and improved approach are discussed.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , COVID-19/prevention & control , Communicable Diseases, Emerging/prevention & control , Health Personnel , Humans , Pandemics , Personal Protective Equipment
17.
Viruses ; 14(5)2022 04 30.
Article in English | MEDLINE | ID: covidwho-1869803

ABSTRACT

From 29 November to 1 December 2021, an "emerging animal infectious disease conference (EAIDC)" was held at the Pennsylvania State University. This conference brought together distinguished thought leaders in animal health, veterinary diagnostics, epidemiology and disease surveillance, and agricultural economics. The conference's primary objective was to review the lessons learned from past experiences in dealing with high-consequence animal infectious diseases to inform an action plan to prepare for future epizootics and panzootics. Invited speakers and panel members comprised world-leading experts in animal infectious diseases from federal state agencies, academia, professional societies, and the private sector. The conference concluded that the biosecurity of livestock operations is critical for minimizing the devastating impact of emerging animal infectious diseases. The panel also highlighted the need to develop and benchmark cutting-edge diagnostics for rapidly detecting pathogens in clinical samples and the environment. Developing next-generation pathogen agnostic diagnostics will help detect variants of known pathogens and unknown novel pathogens. The conference also highlighted the importance of the One Health approach in dealing with emerging animal and human infectious diseases. The recommendations of the conference may be used to inform policy discussions focused on developing strategies for monitoring and preventing emerging infectious disease threats to the livestock industry.


Subject(s)
Communicable Diseases, Emerging , Communicable Diseases , Agriculture , Animals , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Communicable Diseases/veterinary , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Humans
18.
Viruses ; 14(3)2022 03 03.
Article in English | MEDLINE | ID: covidwho-1765946

ABSTRACT

Numerous pathogenic microbes, including viruses, bacteria, and fungi, usually infect the host through the mucosal surfaces of the respiratory tract, gastrointestinal tract, and reproductive tract. The mucosa is well known to provide the first line of host defense against pathogen entry by physical, chemical, biological, and immunological barriers, and therefore, mucosa-targeting vaccination is emerging as a promising strategy for conferring superior protection. However, there are still many challenges to be solved to develop an effective mucosal vaccine, such as poor adhesion to the mucosal surface, insufficient uptake to break through the mucus, and the difficulty in avoiding strong degradation through the gastrointestinal tract. Recently, increasing efforts to overcome these issues have been made, and we herein summarize the latest findings on these strategies to develop mucosa-targeting vaccines, including a novel needle-free mucosa-targeting route, the development of mucosa-targeting vectors, the administration of mucosal adjuvants, encapsulating vaccines into nanoparticle formulations, and antigen design to conjugate with mucosa-targeting ligands. Our work will highlight the importance of further developing mucosal vaccine technology to combat the frequent outbreaks of infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Vaccines , Adjuvants, Immunologic , Antigens , Communicable Diseases, Emerging/prevention & control , Humans , Immunity, Mucosal , Mucous Membrane , Vaccination
19.
Sci China Life Sci ; 65(8): 1504-1516, 2022 08.
Article in English | MEDLINE | ID: covidwho-1739405

ABSTRACT

Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare, bioterrorism, biological accidents, and harmful consequences arising from dual-use biotechnology also pose a challenge for global biosecurity. Improving the early surveillance capabilities is necessary for building a common biosecurity shield for the global community of health for all. Furthermore, surveillance could provide early warning and situational awareness of biosecurity risks. However, current surveillance systems face enormous challenges, including technical shortages, fragmented management, and limited international cooperation. Detecting emerging biological risks caused by unknown or novel pathogens is of particular concern. Surveillance systems must be enhanced to effectively mitigate biosecurity risks. Thus, a global strategy of meaningful cooperation based on efficient integration of surveillance at all levels, including interdisciplinary integration of techniques and interdepartmental integration for effective management, is urgently needed. In this paper, we review the biosecurity risks by analyzing potential factors at all levels globally. In addition to describing biosecurity risks and their impact on global security, we also focus on analyzing the challenges to traditional surveillance and propose suggestions on how to integrate current technologies and resources to conduct effective global surveillance.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Biosecurity , Bioterrorism/prevention & control , COVID-19/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Humans , International Cooperation
20.
Front Public Health ; 10: 775486, 2022.
Article in English | MEDLINE | ID: covidwho-1715077

ABSTRACT

Two-sided messages that include two perspectives (i.e., risks and benefits) are more effective than one-sided messages that convey only one perspective (usually only the benefits). Refutational two-sided messages are effective for communicating risks regarding vaccines. To examine the effectiveness of refutational two-sided messages in risk communication regarding novel vaccines against emerging infectious diseases, we conducted the randomized controlled study based on a 3 × 3 × 2 mixed design (Intervention 1: vaccines against subcutaneous influenza, "novel severe infectious disease," or intranasal influenza; intervention 2: one-sided, non-refutational two-sided, or refutational two-sided messages; two questionnaires) using a Japanese online panel. Participants completed questionnaires before and after receiving an attack message (negative information). We evaluated the impact of attack messages on the willingness to be vaccinated, and the anticipated regret of inaction (ARI). Among 1,184 participants, there was a significant difference in the willingness to be vaccinated among the message groups (p < 0.01). After receiving the attack message, willingness to be vaccinated decreased in the one-sided message group and increased in the non-refutational two-sided and refutational two-sided message groups. Additionally, ARI in the refutational two-sided message groups was significantly higher than in the one-sided groups (p = 0.03). In conclusion, two-sided messages are more effective than one-sided messages in terms of willingness to be vaccinated. Furthermore, the high ARI in the refutational two-sided message group indicated that refutational two-sided messages were more effective than one-sided messages for communicating the risks of vaccines, especially those against emerging infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Influenza Vaccines , Attitude , COVID-19/prevention & control , Communicable Diseases, Emerging/prevention & control , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL